
S.C.O.R.E
Milestone 1



Team
• Charlie Collins
• Tommy Gingerelli
• Logan Klaproth
• Michael Komar

Faculty Advisor/Client
• Dr. Mohan



Milestone 1
• Select tools for server implementation, web development, 

file transfer, and user authentication
• Provide small demos of the tools

• Resolve technical challenges
• Create Requirement Document
• Create Design Document
• Create Test Plan



Milestone 1 - Completion Matrix
Task Completion Charlie Logan Michael Tommy To Do

Select Technical Tools 100% 25% 25% 25% 25% N/A

Select Collaboration Tools 100% 25% 25% 25% 25% N/A

Demos 100% 25% 25% 25% 25% N/A

Resolve Technical 
Challenges

80% 25% 15% 40% 20% Waiting on response from FIT IT

Requirements 90% 30% 20% 20% 30% Requirements for Containers

Design Document 100% 20% 20% 20% 40% N/A

Test Document 100% 50% 20% 15% 15% N/A



Selecting Technical Tools



File Transfer
SFTP
• Application layer protocol

• TCP Transport Layer
• Works over SSH

• More robust
• Allows users to view and interact with 

files
• View
• Edit
• Delete

SCP
• Session layer protocol

• TCP Transport Layer
• Works over SSH

• Faster algorithm
• Can only copy files
• Deprecated in RHEL 9



SFTP Demo



TRACKS CAS 
● Implementing CAS into 

our system seems 
redundant

● Less scalable in the long 
term of the product

User Authentication Tools

Google OAuth2
● Florida tech provides 

student Google accounts 
that are authenticated 
with CAS.

● More scalable, as our 
program would just be 
authenticating with any 
authorized Google 
Account.



Server Tools
Proxmox Virtual Environment
● Seamless deployment of the server virtual environment.
● Allows for snapshots of the development server to rollback in case of 

emergency.
● Can deploy multiple clones for load balancing purposes.

Ubuntu Virtual Machine
● Ubuntu was chosen for flexibility and wide application support among 

distributions.
Tailscale
● Primary method of collaborative access to the development server.
● Simpler end user setup than WireGuard, and allows for uninterrupted free 

connection unlike similar apps like TeamViewer.



Web Application STACK
MERN - MongoDB Express.JS React Node.JS
• MERN stack offers simple and reliable application 

development
• Allows for storage and maintenance of large and complex 

data sets
• High performance with varying project scale and 

complexity
• Strong community and extensive documentation
• Familiar and easy to understand
• Avoids licensing issues



Web Stack Demo

REACT project running, successful routing between multiple 
components using react-router-dom 



Containers
Docker
● Multi-platform, 

requires root 
permissions by default

● Innate client-server 
architecture, less 
secure

● Custom network stack

Podman
● Used less in industry
● More security focused, 

less overhead, quicker 
startup times

● Daemon-less, rootless 
by default, only linux

● Uses standard linux 
network stack



Docker Demo



Technical Challenges



Canvas API
• Found and read the documentation

• Found the API endpoint for submitting grades

• Canvas has implemented GraphQl
• Login to canvas and /graphiql to the end of the url
• GUI to create JSON queries



● Implementation of SAML2 (the protocol CAS uses) is 
possible, and is future-proof

● Getting access to the CAS for development purposes 
requires the documentation that we completed for this 
milestone
○ This is the main roadblock we encountered for this technical 

challenge
We are still in the process of deciding between CAS SAML2 
and OAuth2, but the flexibility of OAuth2 is promising

TRACKS CAS



Containerization
• Containerization is required to ensure the security and 

reliability of the server. 
• Student code needs to be executed in an isolated environment 

to prevent potential malicious attacks on the system. 

• We researched 2 primary tools for comparison
• Podman
• Docker 

• Tested these environments with a demo, to make sure 
their implementation could work for S.C.O.R.E.



Documentation



Software Requirements Specification



Functional Requirements
• Immediate Feedback

• Exactly what a student will see upon auto test completion
• Auto Testing

• How the professor will be able to configure the auto test 
environment and what results the professor and student will 
receive

• Grading Portal
• Teachers will be able to adjust grades and “sync” with Canvas

• MOSS Integration
• Submissions will be sent to Stanford’s MOSS server, and the 

html report will be parsed to be displayed by the application



Functional Requirements (Cont.)
• Assignment Creation

• Fields: Name, description, number of allowed attempts, due 
date, and test cases

• Assignment Submission
• Acceptable file types: python, java, C++, C
• Unacceptable file types: Byte code, folders, compressed 

archives
• Assignment Deletion

• Permanent action from the professor



Interface Requirements
Shell
• Access through code01
• View list of classes
• View list of assignments

• Filter by class

• Submit assignments and view 
feedback

• Add, remove, or edit classes
• Add, remove, or edit assignments

Web App
• Online dashboard showing classes 

and assignment cards
• Students can select an assignment 

card to access the detail page
• Students can submit from this page

• Separate dashboard for professors
• Add, remove, or edit classes

• Grading portal where the professor 
can see submissions, auto test 
scores, MOSS report, and assign 
grades



Software Testing Plan
• Our test plan covers all functional requirements
• Each test case detailed a procedure of inputs and the 

expected outputs
• Covered error cases as well

• Ensure that unacceptable file types are rejected

• Ensured that we accounted for both users and both 
interfaces
• Some features have different interactions depending on whether 

the user is a student or a professor, or if they are using the shell 
client or web app



Software Design Document



UML Diagram - Submission



UML Diagram - Grading



Mockup - Student Dashboard



Mockup - Assignment Detail Page



Mockup - Assignment Creation Page



Entity Relationship Diagram



Milestone 2 - Task Matrix
Task Charlie Logan Michael Tommy

Implement the 
Shell Application

20% 15% 50% 15%

Implement 
Assignment 
Creation

15% 35% 15% 35%

Implement 
Assignment 
Submission

40% 20% 20% 20%


